

Page 1 of 12

Page 2 of 12

CI/CD/CH?
Continuous Integ ration / Continuous Delivery / Continuous Headache?

The Promise

CI/CD was a dream come true. Automated builds! Automated testing! A brief

verification and then—click!—instant deployment of beautiful, new, and validated code

sailing straight to production. It can and should work like this because when it’s done

correctly, it delivers:

• Better quality software with fewer defects through production.

• Faster delivery of business ideas to market by enabling faster release cycles

and allowing software changes in days or weeks rather than months or quarters.

• Cheaper implementation across the entire lifecycle, including less time spent

coding, deploying, and testing software changes.

The true value of CI/CD is that organizations can adapt to market changes and

innovate faster than their competitors. Change the software powering the business,

and then release those applications as fast as developers write new code and testers

verify it. Prior to CI/CD, unpredictability stalled software changes through complexity,

bugs or defects during testing, poor code quality, and processes designed for ancient,

mainframe systems.

Ideally, CI/CD allows business stakeholders to spend their time innovating instead of

dealing with problems. Compared to the pre-historic, pre-CI/CD era where even the

smallest of software changes led to big, risky releases, it’s nothing short of

revolutionary. Unfortunately, the real-world experience is less than ideal.

Page 3 of 12

The Headache

The dream of CI/CD has not materialized for most organizations. In fact, things are

actually worse than before. Despite plenty of automation, no one seems to know how

it all ties together. Critical releases move slower and have more defects than before

because too many tools overlap duties, and each tool has its own set of idiosyncrasies.

Problems lead to finger pointing. Senior decision makers wonder why they approved

purchasing these tools. Managers worry about their team morale and getting releases

finished bug-free. Engineers can’t access the detailed execution logs they need and a

slow approval process stymies up-and-coming developers.

Like all unholy messes, a CI/CD headache isn’t built overnight. It emerges after bolting

tool on top of tool in various parts of the software delivery process over time. Each of

these tools may make sense, but when you bring everything together—including the

hundreds of interdependent applications relying on these tools—you end up with a

“Frankentool” no single person can fully understand, let alone properly use or

improve. It becomes a monster.

You may have already created a “Frankentool” and not even know it yet. Answer the

following questions, and then keep reading.

1. Do only a handful of engineers understand how your software delivery process

works?

2. Have you experienced an information bottleneck because only 1 or 2 people

had the information integral to a build or release?

3. Do less than 5 people interface with the CI/CD process?

4. Does it take hours to track down basic information—like which changes are in

which build artifact, which environment those builds were deployed to, or what

exactly was tested?

Page 4 of 12

5. Have business stakeholders built their own “metasystems” using a series of

issue tracking tools, spreadsheets, meetings, sticky notes, and emails just to

figure out which application is in which state?

6. Can your organization deliver software only as fast as the handful of people

who understand the complex systems can deliver information and decisions?

If you answered “yes” to any of the previous questions, you likely have a CI/CD

headache on your hands. Don’t panic. There’s a way out of this mess. Inedo’s

BuildMaster was specifically designed to help you navigate the complex and technical

landscape to realize the dream of CI/CD without the headache.

A Little About Software Delivery with CI/CD Pipelines

Real world CI/CD relies on a balance between automated building, automated testing,

and manual verification to quickly deliver ideas to production…and roll those ideas

back quickly if they don’t work out.

Figure 1: The CI/CD Pipeline

• Stakeholders specify an innovative, new change to a software application. IDEA

• The new idea is assigned to a developer who turns the idea into new code. New code is submitted to the
source code repository.

CODE

• A continuous integration server retrieves the new code, compiles it, and performs complex automated tests
that minimize the risk of introducing unintentional behaviors and ensure it’s suitable for manual testing.

BUILD

• Testing is performed in a tight feedback loop with the developer and a human tester.
• DEPLOY: The application deploys to a testing server for human testing.
• VERIFICATION: Humans test for a specific purpose, such as functional or business acceptability.
• ADVANCE: Upon successful testing, it advances to the next stage of testing or production

TESTING

• Once testing completes, the application schedules for deployment at a business-appropriate time. PRODUCTION

• If a problem arises despite all of the testing, changes are easily rolled back. ROLLBACK

Page 5 of 12

Figure 2: CI/CD Pipeline Idealized

Nearly all organizations have a less-than-ideal software delivery process leading to

less-than-ideal releases. A poor process can only result in delays, bugs, and a product

falling short of the vision. In today’s marketplace, the pressure to deliver releases

faster and faster strains the software delivery process. Therefore, the process must be

seamless. At Inedo, we have pinpointed multiple points of potential process

breakdowns.

Breakdown 1: Brittle Toolchain Links

Software delivery processes and tools link together through a combination of people-

driven conventions and software-driven integrations. For example, when a developer

enters an Issue ID as a source control commit note, a script will post a comment to the

issue tracking system with the Commit ID.

As the pace of software delivery increases in the real world, not only do these brittle

links become more and more important, but so does establishing even more links

between the disparate tools and systems. But, each new link remains just as brittle as

existing links. They are often implemented with some hastily written script tied to an

arcane feature of one of these tools.

Page 6 of 12

Figure 3: CI/CD Pipeline Failure

At the same time, the pressure to speed up software delivery increases and creates

new opportunities for human error and script failure. These failures can be costly: if a

developer neglected to properly link an Issue ID or the script processing it failed,

imagine the challenge of trying to identify which one of dozens of commits were

related to which one of dozens of issues. These brittle links compound and only get

worse as tools and complexities grow.

Breakdown 2: Browning Greenfields

A greenfield is a brand-new application built from scratch to solve an organization’s

problematic software delivery process. No patching. No maintaining old software. It's a

fresh start! But, changing the whole system costs, and, inevitably, the new software

becomes old software after two to three years.

A brownfield is an old greenfield. It’s the legacy software systems and processes that

are not ideal and more complicated to maintain.

Many organizations realize the challenge of overhauling their software delivery

processes and invest in a “greenfield” process for new, “greenfield” applications. They

hope, over time, the new applications will gradually replace the existing applications

and underlying software delivery processes.

Page 7 of 12

Of course, this neglects the actual, larger problem (i.e. effectively delivering the

existing, legacy applications already creating business value), but it also establishes a

new set of tools and processes unavoidably becoming brownfields.

Then, the “new” processes become too risky to overhaul, and someone else will decide

to solve that problem by creating yet another “greenfield” to use. It’s a vicious,

unwinnable cycle.

Breakdown 3: Crisscrossing Dependencies

Many business units comprise organizations. Each unit has their own sets of

applications for following their own delivery processes.

For example, the mortgage division at a bank would use totally different systems than

the same bank’s wealth management division. Historically, this hasn’t been a problem;

a bank customer would realize these are, in fact, two different business divisions and

thus, would have two different relationships with the bank.

However, as organizations evolve, consumers seek simpler and more integrated

relationships. Different divisions must become aligned. For example, a unified banking

portal must allow customers to see their mortgage and investment accounts in one

place.

This sort of integration challenges developers in and of itself, but it also must

coordinate across a mass of greenfield and brownfield processes, each with their own

set of brittle toolchain links.

Breakdown 4: Bottlenecks

The few engineers that oversee these tools and processes quickly become information

bottlenecks and a sort of human interface to the CI/CD process. Tracking down basic

information—like which changes happened in which build artifact and in which

Page 8 of 12

environment the build deployed to, and what exactly was tested—can take hours

because only a few, very busy people can track down the answer. By the time they

answer, it’s already outdated.

As a result, business stakeholders build their own “metasystems” using a mess of issue

tracking tools, spreadsheets, meetings, sticky notes, and emails just to figure out which

application is in which state, and when they can release new changes. Then, the

stakeholders become decision bottlenecks as well in emerging as another human

interface to these incomprehensible metasystems.

Ultimately, such an organization can deliver software only as fast as the handful of

people who understand the complex systems can deliver information and decisions.

As more complexity and automation gets added, fewer and fewer people can manage

them. The process only serves failure.

 Figure 4: The Metasystem Mess

Page 9 of 12

The Solution: BuildMaster

Inedo’s BuildMaster delivers CI/CD for the real world. It was designed from the ground

up to manage and automate the software delivery process. The application

strengthens brittle links between the tools you already use and oversees software

delivery for all of your applications—legacy or otherwise—in a way everyone in your

organization can understand. Here’s how we do it.

1. BuildMaster Embraces Complexity

Organizations fighting the “Browning Greenfield” cycle can relax with BuildMaster. The

application does not make you choose between new and legacy systems. The

application does not force a single way. In the real world, there will always be a mix of

legacy and new systems.

BuildMaster allows you to use the old systems, develop new systems, and use the two

at the same time in a seamless process. The application lets you adapt to a changing

environment and embrace reality.

Inedo has designed BuildMaster for constant reuse and adaptation to fit your changing

business needs. We address the complex nature of IT and make it work for you. It's

time to let go of the vicious flip-flopping between an old, working software delivery

process and shiny, new, ideal process that is expensive and unproven. You no longer

must choose.

2. BuildMaster Works at Your Speed

Whether your organization aims for 5 deployments a day or 1 per year, BuildMaster’s

flexibility works at any speed. We designed BuildMaster, first and foremost, to manage

software delivery processes and allow organizations to define and change those

processes at their required speed.

Page 10 of 12

Because software powers so many processes, the software must be able to adapt at an

ever-increasing rate. Currently, your organization may have a mismatch between the

ability of separate teams to deliver and the release cycle. Though one application

team can deliver releases on a reliable two-week cycle, the organization can only

change as fast as its slowest application. With BuildMaster, each team integrates and

works at the optimal speed.

3. BuildMaster Decentralizes CI/CD

Forcing a uniform CI/CD process throughout the organization quickly results in

noncompliance and, ultimately, an even worse mess of undocumented or even rough

processes. Instead, we provide groups with tooling that lets them define and take

responsibility for their own software delivery processes.

Groups are finally responsible for meeting their own goals, and they must become

proficient at changing their own software-driven processes. Just like there’s no one-

size-fits-all software application, there’s no one-size-fits-all software delivery process.

BuildMaster, a self-service platform with fine-grained permissions, allows different

groups to build and deploy their own applications while defining their delivery

processes to any configured environment.

At the same time, oversight is important. While each group owns its own software

delivery process, it must still align with IT governance, and auditors need centralized

access.

4. BuildMaster Is Scalable

BuildMaster allows you to start simply and then scale to servers and the cloud. We

designed BuildMaster for heterogeneous environments and to work with a mix of

development languages (.NET, Java, NodeJS) and platforms (Windows, Linux, cloud). It’s

language- and technology-agnostic while supporting virtually every type of software

application and component.

Page 11 of 12

When engineers hear the world “scalable,” they tend to think of things like distributed
systems and load-balancing. While these are important considerations for CI/CD
tooling, it’s equally important that all of an organization’s different groups adopt.

BuildMaster is intuitive to learn and use. But, companies do not have to take our word

for it. Inedo now offers multiple training options including hands-on, classroom-style

and self-guided training. We understand different groups have different backgrounds

and skill levels. Inedo commits to making sure training facilitates BuildMaster’s

adoption.

5. BuildMaster Focuses on Business Stakeholders

BuildMaster’s design befriends every level of your organization. Executives, managers,

engineers, and developers—everyone can use the program easily.

Managers have 24/7 access to the dashboard. It shows the information they need in

real time and at a glance, making it easier and simpler to report. The dashboard tracks

the status of every process in the production cycle and allows managers to approve

and sign off on the dashboard to deploy the next environment. The days of delay when

managers waded through a series of emails to check status before approving are over.

It’s all on the dashboard. No email needed. In addition, managers can set up

automated approvals triggered by the successful completion of milestones.

Inedo understands engineers live and die by the details. With BuildMaster, engineers

have access to granular information including comprehensive execution logs showing

exactly what happened on which server, when, and by whom. Developers can maximize

their efficiency because they no longer must wait for approvals.

Next Steps

Step #1: The High-Level Interview

We understand the stress behind quickly delivering a bug-free, software product. We

want to hear your vision and learn your goals. What are your current problems?

Page 12 of 12

What keeps you up at night? Our executive team listens. It’s free, easy, and happens at

the management level.

Approximate time: 1 hour.

Step #2: Into the Weeds

Once you decide BuildMaster demands more investigation, we patch our technical and

engineering team with your technical team. This conversation gets way down into the

weeds. BuildMaster should fit every level of your organization and align with your

organization’s vision and technology goals. We ensure no one wastes time and

resources.

Approximate time: 1 hour.

Step #3: Hands on Demonstration

Inedo’s best engineers demonstrate exactly how BuildMaster automates, accelerates,

and integrates software delivery processes. You learn the program and experience our

tested and proven on-boarding strategies. Our experience and clients tell us

BuildMaster is extremely intuitive, but, if you need them, our professional training

services meet your needs.

Approximate time: 1 hour.

Step #4: Guided Proof of Concept

We can prove BuildMaster will work for you. Our team performs a real-life proof of

concept. Our engineers collaborate with your team and solve a real problem you have.

We know the value of testing a new program before implementing it, and we offer

proof of concept in recognition of this.

Approximate time: Highly dependent.

	ci-cd-buildmaster-web.pdf
	CI-CD-CH
	The Promise
	The Headache
	A Little About Software Delivery with CI/CD Pipelines
	Breakdown 1: Brittle Toolchain Links
	Breakdown 2: Browning Greenfields
	Breakdown 3: Crisscrossing Dependencies
	Breakdown 4: Bottlenecks

	• Stakeholders specify an innovative, new change to a software application.
	IDEA
	• The new idea is assigned to a developer who turns the idea into new code. New code is submitted to the source code repository.

	CODE
	• A continuous integration server retrieves the new code, compiles it, and performs complex automated tests that minimize the risk of introducing unintentional behaviors and ensure it’s suitable for manual testing.

	BUILD
	• Testing is performed in a tight feedback loop with the developer and a human tester.
	• DEPLOY: The application deploys to a testing server for human testing.
	• VERIFICATION: Humans test for a specific purpose, such as functional or business acceptability.
	• ADVANCE: Upon successful testing, it advances to the next stage of testing or production

	TESTING
	• Once testing completes, the application schedules for deployment at a business-appropriate time.

	PRODUCTION
	• If a problem arises despite all of the testing, changes are easily rolled back.

	ROLLBACK
	The Solution: BuildMaster
	Next Steps

